

Effect of Grazing on Net Primary Production of a Mongolian Grassland Ecosystem

Chen Yuxiang, Lee Gilzae, Lee Pilzae, Mariko Shigeru, Oikawa Takehisa Institute of Life and Environmental Science, University of Tsukuba

Background

- Approximately 75% of Mongolian total area is covered with grassland and shrubland, which are grazed by domestic livestock all the year around (Maria E. Fernandez-Gimenez, 1999).
- Net Primary Production (NPP) is an important component in carbon cycle. Aboveground net primary production (ANPP) is directly related to grazing capacity of grassland.
- Plant growth and defoliation dynamics are difficult to monitor in grazed rangeland (White, 1984). So simulation is a helpful approach for studying a grazed grassland ecosystem.

Objectives

- To analyze the effect of grazing on a grassland ecosystem by using a simulation model (Sim-CYCLE grazing)
- To estimate the stocking rate of grassland in Kherlen Bayaan-Ulaan (KBU) by Sim-CYCLE grazing

Study site

- Kherlen Bayaan-Ulaan(47°28 N 108°78 E)
- Altitude: 1300m
- Annual precipitation: 202mm
- Annual mean temperature:1.4
- Vegetation: semi-arid steppe, dominant species are *Stipa krylovii, Artemisia frigida, Cleistogenes squarrosa.* C4 plant species occupy about 10% of total biomass.

Model description (1)

Characteristics of Sim-CYCLE model (Ito and Oikawa, 2002):

- Process-based model
- Compartment model

WE=WP+WS $WP=WP_{F}+WP_{C}+WP_{R}$ $WS=WS_{L}+WS_{H}$ $GPP_{INS} = \int_{0}^{LAI} PCdLAI$

LAI: leaf area index PC: photosynthetic rate NPP=GPP-ARM-ARG = W+Litterfall+Dr Dr: Defoliation rate (kg ha⁻¹ d⁻¹)

Model description (2)

Defoliation sub-model (Seligman N.G., 1992) :

$$D_r = E * S_r ((WP_F + WP_C) - (WP_F + WP_C)_u)$$

(0

Dr: Defoliation rate (kg ha⁻¹ d⁻¹)
E : Grazing efficiency of livestock (ha d⁻¹ per sheep)
Sr: Stocking rate (sheep ha⁻¹)
(WP_F+WP_C)_u: Residual aboveground biomass unavailable to the livestock (kg ha⁻¹ dry matter)
Dx: Satiation consumption rate of the livestock (=2.4kg dry matter d⁻¹ per sheep)

Model description (3)

About the defoliation sub-model:

- □ Animal is regarded as "negative" consumer.
- Effect of grazing was simulated from June to September.
- **Grass evenly distribute vertically and horizontally.**
- Grasses have not been divided into palatable and unpalatable species.
- **□** Forage intake is limited to green leaf and stem.
- Plant growth depends on soil water, and other soil nutrients are regarded as non-limiting.

Model description (4)

Time step: Monthly

Model input

Model output

Monthly changes of LAI, biomass, GPP, NPP etc.

Results and discussion (1)

Model validation

Simulated Measured (Urano et al. 2004)

Results and discussion (2)

Effect of grazing on aboveground biomass

SR: Stocking rate (sheep ha-1)

SR	Biomass <i>max</i>	Decrease
	(Mg DM.ha-1)	(%)
0	1.09	0
1	0.87	20
3	0.63	42
4	0.53	51

Month	Precipitation	Temperature
6	26	20
7	57	22
8	61	19

Results and discussion (3)

Effect of grazing on ANPP

SR: Stocking rate(sheep.ha-1)			
SR	ANPP Max	Decrease	
	(Mg DM.ha-1.month-1) (%)	
0	0.46	0	
1	0.40	13	
3	0.29	37	
4	0.23	50	

Results and discussion (4)

Intake per sheep in growing season

Conclusion

A new simulation model, Sim-CYCLE grazing estimated the following features:

Aboveground net primary production (ANPP) will decrease with increasing stocking rate

The stocking rate of KBU grassland in growing season should not be higher than 3 sheep or sheep equivalent per hectare

Acknowledgements

This study has been supported by a CREST project (The Rangelands Atmosphere-Hydrosphere-Biosphere Interaction Study Experiment in Northeastern Asia) of JST. The authors are thankful for the helpful discussion and suggestion provided by Dr. Mo Wenhong and Dr. Wang Qingeng.

Thank you!

